Trending Now

Clarke had it right, AI is magic

Any sufficiently advanced technology is indistinguishable from magic
Arthur C Clarke


A few weeks ago, Tim Peter and I spoke about AI on our podcast.  There continues to be a lot of hype about what AI can really do for website owners. I fear, that like blockchain, we’re heading for Gartner’s fabled Trough of Disillusionment if we’re not there already. While AI is not the silver bullet for all business problems, there are those that are well suited with the tools that are available today. But like any solution you have to have a valuable problem and the right approach to applying the solution.

So, how do you get started? There are three real impediments to getting AI off the ground.

  1. Unreasonable expectations
  2. Concerns about data
  3. Skills and Experience

The AI Expectation Problem

We always overestimate the change that will occur in the next two years and underestimate the change that will occur in the next ten. Don’t let yourself be lulled into inaction.

Bill Gates

The Trough of Disillusionment is largely filled with folks, especially at B2B companies, who came to AI with unreasonable expectations. Like any new technology our expectations for near-term impact are always too high. There are no magical powers, there’s only hard work. So the first step in applying AI to any business problem is assessing the measurable value of the problem (make sure you have a business case) and think small.

Most “big bang” projects — large budgets, lengthy schedules, massive business cases — fail to meet expectations. With new technology the risk is even greater because not only are you proving that the project is valuable, but also that the platform can deliver.

To minimize your risk, think MVP (Minimum Viable Product) which is really just a fancy way of saying “Proof of Concept”. Identify a handful of experiments that you can run. This reduces the risk of failure — the likelihood that all the experiments fail is low — and set out goals that aren’t purely business value. For instance, teaching your dev team how to set-up a text analytics platform has a lot of value in the long run.

The AI Data Challenge

One of the intimidating challenges for AI projects is getting the data. Modeling can consume a fair amount of data but it’s not usually the volume of data that trips companies up, it’s that availability of that data.

Many problems where AI can help requires data from across the organization. Building the connections, both technically and within the management system, with other organizations to access the data is critically important. Ideally, availing yourself of data from work that’s already being done within the company will provide you with the right access. Of course, normalizing that data to work together can still be a challenge.

The AI Barrier: Cost

One of the largest barriers to getting started is skills and expertise. Competition for data scientists is fierce and consultants who do this work can be costly. There are essentially two types of consultants that can help. Domain experts with software that focuses on one specific type of problem and custom development shops.

Working with a software vendors can provide you with a quick start, but it often presumes that you have a problem that fits with the software that they’re selling. What we’ve seen in the marketplace is that the best packaged AI solutions are in very narrow domains. If that’s a fit for you it can be a great accelerator.

Custom development is a great option when you have a rather unique problem. The downside of this approach is that you’re often building both the platform for the application and the application itself. The timelines for this approach can be long and the cost high.

One of the the ways we’ve found successful is to find a vendor who has both domain expertise and a good platform but not necessarily an application that meets the need. If they have application expertise in a close swimlane, they may be able to provide you with something that is specialized for your use case but not rigid like a prebuilt application. This allows you to enter with a modest investment and a solution that meets your solution needs.

It’s not magic, it’s work. Valuable Work.

When AI works, I think Clarke was right, it does seem magical. And what business can’t use a little magic? But don’t buy into the hype. Don’t be frightened by the expectations curve. Do find a valuable problem. Do run a few experiments. Do start. Build the muscle memory. Find the place where AI allows you to build a valuable customer experience.

Steve Zakur

With over 20 years of experience in marketing and digital technology, Steve is now CEO of SoloSegment. SoloSegment is a marketing technology company that uses machine learning and natural language processing to improve engagement and conversion for large enterprise, B2B companies.

Join the Discussion

Your email address will not be published. Required fields are marked *

Back to top